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I. Introduction

The auvthor developed the ideas outlined in this paper while
attempting to construct an algebraic grid1 for the X-24C aircraft.
(See Figure 1.) In a natural way this plane can be divided
into the forebody, the body, and the airfoil. The forecbody
can be further divided into the nose and the canopy. The airfoil
region can be subdivided into the airfoil and the body adjacent
to it. The frustration of trying to blend these various pieces
together into one large grid drove the author to search for
a technique of approximating one-to-one continuous functions
(i.e. homeomorphisms) by one-to-one smooth functions (i.e. diffeo-
morphisms). Techniques lifted from the Differential Topology
books by Hirsch? and Munkres3 provide the foundation for the
theorems and ideas presented in Section II. Theorems 2.1 and
2.3 guarantee that any continuous transformation can be approximated
arbitrarily closely by a smooth one. Theorems 2.4 and 3.1
can be used to ensure that the approximation will have non-zero
Jacobian. Theorem 2.5 ensures that the approximation of an
orthogonal grid will be almost orthogonal.

To apply the smoothing theory to grid generation a large
number of double (or triple) integrals must be computed. Theorem
3.2 is the 2-dimensional version of Simpson's Rule which was
used to calculate the convolutions at the various grid points
for the examples pictured at the end of the paper. While other
more sophisticated methods (e.g. iterated Romberg) could be
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function Op(x,y) = 0p(x) - Op(y) is a bump function of two

variables such that [P[P Op(x,y)dxdy = 1. }

Definition. 1If F(g,n) is a piecewise continuous function from

R2 + R, the convolution of F by Op is:

II. The Smoothing Theory e

An excellent reference for the Advanced Calculus nceded in
this section is Rudin4. While the theorems are all stated for
two dimensions, they are all valid in n dimensions.

The smoothing techniques from Differential Topology involve
a convolution with a "bump" function. While there are innumerable
choices for a bump function (e.g. cubic B-splines), the one

indicated below proved convenient.

0 if x = 0
Definition. a(x) =

The real valued function a is C® (i.e. All higher derivatives
exists); the graph of @ is indicated in Figure 2. . R

If a < b, then define B(x) =aix - a) * a@(b - x). The

function B is also C%®; its graph is indicated in Figure 3.

Since we want the interval a,b] to be symmetric about zero,

we define EXP(-p2/(p2 - x2) if |x] < p ;1.
Bp(X) = ;:_‘:--
0 if |x] = P/ where the S
p N
arameter 0. If A = C) = A the
j p > b lp Bp(x)dx and p(x) Bp(x)/ p’ n
0,(x) is a C” bump function such that [P 0,(x)dx = 1. The
P

PP
Let Rp denote the square [—p,p] X [—p,p] .
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- s Op* F(E'n) = RLIF(g-u, n-v) -op(u,v)dudv.-

This convolution can be thought of as an "average” of the values

F near (£,n). Heuristically, Theorem 2.1 states that if p

is "small", then Op* F is "close" to F.

¥ AN - K

Theorem 2.1.

If F is continuous, ¢ >0, anle(g-u, n-v) - F(g,n)ls £
for all (u,v) € Ry then IGP*F(g,n) ~ FlE,n)]s € .
Proof.

The result follows from the following sequence of
equalities and inequalities.

lop* F(E,n) - F(E,n) |

|/ FlE-u, n-v)@p(u,v)dudv - F(&,n)|

Rp

< /] Op(u,v)-lF(g—u, n-v) - F(£,n)| dudv
Rp

< e[ 0_(u,v)dudv = ¢.
Rp p

Theorem 2.2 shows that if p is "small” and 3F(§,n) is
X2

is- "close"

F? is continuous at (E'n) then (QP *az(g’n))

to 23F(f£,n) . Note that Theorem 2.2 can be easily generalized to

g
higher derivatives.

B B R 7

Theorem 2.2. ;;,{
. Lok
If F(g,n) is ¢!, then  (Op * Fl&m)) _ - 3F(E,ni) e

Y p g
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Morcover, if € > 0 and |3F(f-u, n-v) - F(L,n)| s ¢ for (u,v) ¢ Rp.

P 3§
then |3®p * F(E,n) - 3F(E,n)| < £
. 9g 9¢
. Proof.
Since 3 [f Op(u,v)F(g-u, n-v)dudv = [[ Op(u,v)-3F(E-u,n=v) dudv,
3f R d
l EGP*F(E,n) _ Op= F(£,n). The second half of the theorem follows
3E 9t
from the proof of Theorem 2.1.
i Remark.
N Theorem 2.2 could have been phrased as follows: If JF is
Ny ' 13
~ _
T piecewise continuous and m < dF < M, then m < Op * 22 < M.
' 3t 3¢g
; Thus, at points where 3F is not continuous, the convolution of F
- <. - a€
> by Op "blends" the first partials of the grid in one section into
. those of the next. This blending also occurs for all higher
i derivatives.
‘f Theorem 2.3.
)

If F(E,n) is piecewise continuous, then Op * F(E,n) is C®.
Proof.

By change of variables we have

i 30L*F(E,n)
X _p - %E [ Op(u,v)'F(ﬁ—u, n-v)dudv

X3 Rp
n+p, £+
= d__- i fj Q (&+u, n+v) F(u,v)dudv
3€ nop £f-pn P
n-p £-p
n+p £+p
, ' ) n—é g{;)Op(§+u, n+v) F(u,v)dudv.

of
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Theorem 2.4 ensures that if T is on¢~-to-one and p is "small”,
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Theorem 2.4,

If T(g,q} = (X(E,n), Y(E,n)) vhere X(€,n) and Y(g,n) are cl,
then if the Jacobian J of T is not zero there is a p> 0 such
that the Jacobian Jp of Op * T(£,n) = ( Op * X(§,n), 6p * Y(E,n))

is not zero. '

Proof.
The Jacobain Jp = (Op * 3X) - (Op * 3Y) - (Op * 3X) - (Op * 3Y).
£ on an g

By Theorem 2.2 1lim Jp = J.
p *0

Theorem 2.5,

Let T(E&,n) = (X(E,n) , Y(£,n)) be a C! transformation and

let ¥ be the angle between u = (39X, 3Y ) ang v = (3X , 3Y ).
af 3¢ an an
1f Y, denotes the angle between u, = (0, * 3X , Op * 3Y ) and

—_— —

n n p*0

Proof.

By Theorem 2.2 1lim uy = u and 1lim vp = v. Since cos ¥
P P P
p+0 p+0 Up

(u-v)
and cos ¥ = — , lim wp = V¥ ,
-lul' Iv] p>0
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Theorem 2.6.

If F(§,n) = Fy(&,n) + Fa(&,n) , where Fy and Fp arc piecewise
continuous, then Gp * F(g,n) = 0 * Fy(g,n) + Op * Fo(E,n).

| Proof.

The additivity of the integral is all that is needed to

prove this theorem.

; Theorem 2.7,

1f F(E,n) = f(£) -g(n) where f and g are piecewise continuous,
then Op * F(g,n) =0 * £(£) -6y * g(n))-

E Proof.

This result is an immediate consequence of Fubini's Theorem.

‘Theorem 2.8.

' If F(E,n) = A + BE + Cn + Dgn,then Op * F(E,n) = F(E,n).
Proof.

It is a routine check to show that if G(g,n) = £, then
Op * G(E,n) = G(g,n). The theorem is now an immediate consequence

of Theorems 2.6 and 2.7.

Theorem 2.8 shows that if a portion of the grid of the air-
craft can de defined by equations of the form F(f,n) = A + B, + Cn + DEn -
hen the convolution step can be bypassed. Thus, the grid can be :

generated much more rapidly in that region.

I1I. The Examples

Theorem 3.1.

\
If T(E,n) = (X(E,n), Y{(&,n)) has piecewise continuous
partials which satisfy m < 3X < My), m s 3X < M12’ myy < D M2l’
A ot an a&
- then

and m,, < 3Y < M,s for points in [u-p, u+p] x [v-p, v+p],

...........................
..............................................
..............................................

. % "o
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the Jacobian Jp of Op T is non-zero if ecither myiMyp M21M12 e
or MyMyp T MMy < O by
Proof. PRt

3
Mype N

1A

By the remark after Theorem 2.2 myy < Op * axgELﬂl

etc. Since mllm22 - M12M21 < Jp < M11M22 - m12m21, Jp is not zero.

Let -p = X5 < X; < ...< x, = p be a partition of [-p.p]

_ - . . = . .. = : : sy ,C_J
such that X541 X5 h for all i. Let Y3 Xj- Let Ajj {(1'3)|1’3105P,<

or 2n and either i or j odd}. Let Bjj = {(i,3)] i or § = 0 or 2n}.

Theorem 3.2. (Simpson's Rule in 2-Dimensions)
If F(u,v) is a C4 function on Rp, then ffi
[[ F(u,v)dudv = 4nl-] F(xj, yj) -+ % hn2. ] F(xj,yj) + Err,
Rp A; s Bi j
1]
< 4 2 4 4 :
where |Err] < M:-h'/8 - (2p)“. (The constant M = max {|3 F{, 3 F e
dud dJul-ovs | ik
a%Fl 1)
av4
Proof: ;
Except for the fact that a 2-dimensional version of Taylor's :
Theorem is necessary, the proof of this theorem is the same as the -
familiar Simpson's Rule. 1ﬁﬁ;
Since the functions F(u,v) to be integrated in this paper are t{g;
X{(u,v) or Y(u,v) convolved with Op , Flu,v) = 0 whenever u = + p L'
or v = + p. Thus, for the purposes of this paper [[ F(u,v)dudv :Eiﬁ
Rp '.i;
%hz-f R(xi,y.). For the applications illustrated in this ;;if
Aij X
paper h was chosen to be p/4. This choice of h is eguivalent to ;&3:

..............................................................
.........................................................
...........................

.............
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dividing the sqguare into 16 equal pieces. To approximate the
integral of F when h = p/4 the function must be cvaluvated at 40
points. See Figure 5.

The following example has been worked out to illustrate how
the theory from the provious section can be applied to a specific
transformation. The equations given below approximate the projec-
tion of one half of the X-24C aircraft into the plane. The trans-
formation to be smoothed is T(u,v) = (X(u,v), Y(u,v)) where X{u,v)
and Y(u,v) are defined below.

If u<1l, X(u,v) = u and Y(u,v) = 2v.

iIf 1 cus<2, X(u,v) = -13 + 14u + .8u - .8uv and

Y(u,v) = -3.5 + 3.5u + 1.9v + (.1l)uv.
If 2<u< 3, Xlu,v) =7 + 4u - 1.15v + .175uv and
Y(u,v) = -.5 + 2u + 1.3v + .4uv.
Let F(u,v) =\/Vu2 + v2 + u .
Let A = 22 - /5/4F(1,v)3 + 3/2/4-v-F(-1,v),
B =76 - 19u - 2.5v + .625uv,
C = 5.5 - YZ/4F(-1,v)> + 3/2/4-v-F(1,v), and
D =22 - 5.5u + 10v - 2.5uv.
If 3<u< 4, X(u,v) = (u-3)A + B and Y(u,v) = (u-3)C + D.
1f  u=4, X(u,v) = 22 - VZ/4-F(5-u,v)> + 3/2/4-v-F(u-5,v) and
Y(u,v) = 5.5 - /774F(u—5,v)3 + 3-v-F(5-u,v)/2/4.

Note that the transformation on the region u=2 4 is nothing more

than a translated and rotated version of the map w = z% . For

3<u< 4 the transformation is an interpolation between a straight

Y2

line and the w = z  map. The grid for this transformation is

!

illustrated in Figure 4. Note the singularities of the first

e

—
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derivative along the lines u=1l, u=2, u=3, and u=4. A smoothed
version of this grid is seen in Figure 5. This grid was generated

by convolving T with the bump function Op(u,v) where p = 0.5.

Note that the singularities have now disappeared.
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IV. Concluding Remarks

- The mathematics in this paper shows that it is possible to
patch a grid together from local grids. Even if the "patched”
grid is not smooth, it can be approximated by a smooth one.
Desirable properties such as orthogonality and appropriate

clustering of grid points will be almost retained. While this

approximation technique will never produce grids as "perfect” Efﬁ;
as those generated by conformal or hyperbolic techniques, it o
should be useful in piecing together complicated configurations
where one is more interested in obtaining a "reasonable" grid

rather than a flawless one. Once the equations for the grid in

each section have been obtained, the method is very fast. Also,
since the convolutions are evaluated locally there is no accumulated ST
- error. (i.e. Errors incurred in calculating one grid point do not enter

into the calculating of the next.) The examples illustrated were

all run single precision. Obviously, if more accuracy is :ﬁ”%

warrented, the computer programs could be run with double precision
and with a larger selection of points when applying Simpon's Rule.
When applying the smoothing techniques indicated in this paper,

care must be used when choosing the value of the parameter p. If

p is too large the approximation will not be close enough. Thus,
the Jacobian could become zero or the ccntrol on orthogonality
could be lost. If p is small relative to the number of grid points,

the grid will have "numerical discontinuities" in the derivatives.

. One final remark should be made. The parameter p does not

--------

MM
(SRS
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have to be a constant. If very tight fit of grid lines is nceded 2
j e )
at some point, the parameter p can be allowed to approach zecro. Erv
e

This new convolution will still be C if p is constant near points

SR
* LA

of discontinuities of the partial derivatives of the transformation.

If p varies arbitrarily the new transformation will only be Cl.

s % "1 Y Y
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SMOOTHING PATCHED GRIDS
David C. Wilson
Mathematics Department
University of Florida, Gainesville, Florida 32611
Abstract

The purpose of this paper is to indicate how smoothing techniques can be
utilized in the area'of grid generation. The focus of the paper is to show
how one global grid can be patched together from a number of smaller ones.
The procedure usually takes place in two steps. First, one global grid 1s
patched together from a number of smaller ones, allowing for the possibility
that the derivatives along common boundaries may not be continuous. The

second step is to then approximate this grid by a smooth one in such a way

that the essential structure of each patch is preserved.

This research was supported in part by AFOSR Grant #83-0158. The paper
was revised whilﬁ‘an ASEE Fellow at NASA Langley during the Summer of 1984.
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I. Introduction

The author developed the ideas outlined in this paper while attempting to
construct a grid for an aircraft. A plane can be divided in a natural way
into components such as the forebody, the airfoil, the tail, etc. The regions
surrounding these components can usually be subdivided in a natural way so
that suitable local grids (or patches) can be found for each subregion.
However, the frustration of trying to splice together these various pieces
into one global grid drove the author to search for a technique which would
blend one patch into the next while still preserving the essential structure
of each local grid. The principal smoothing technique described here involves
: a convolution of the grid transformation with a "bump” function to obtain a
new smoother grid which approximates the old one. Each new grid point can be
thought of as a weighted average of nearby points.
| In this paper no effort will be made to deal with patches that overlap as
. Steger, Dougherty, and Benek [1] have done. 1In fact the standing assumption
will be that adjacent patches will have common boundary. Moreover, the grid
I points on a common boundary between two adjacent regions will be assumed to
agree. In the terminology of M. M. Rai [2] the grid may have metric discon- ';::J
tinuities but no discontinuities. Figure 1 indicates the difference. (The o
author would prefer to say the grid is continous but not smooth.) :;_Jq
Actually, the problem of smoothing grids has been encountered before. i;;i

For example, the elliptic method [3] or [4] can be thought of as a smoothing jiﬁ?f

technique. The reason for this 1s that before the iterative scheme is to
begin, the user must provide an initial guess (smooth or not). With good
forture this guess is then rapidly molded into a smooth grid. Even simpler is

‘ the Laplace operator

XD =[x _ (I, J-1D+X_(I,J+1)+X (I-1, 0 +X ,(I+1,) 74
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A few iterations with this operator and a grid can be smoothed signif-
icantly. However, too many iterations may lead to a grid which is not
one-to-one. E?amples 1llustrating this difficulty are discussed in

Section III. Kowalski [5] has developed a variation of the Laplace operator
to smooth an algebraic grid. He allowed his operator to sweep through the

grid as many as 12 times.
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I1. The Smoothing Theory

In order to explain the examples presented in Section III 1t is first
necessary to present the background to the smoothing theory. While grid
generation is primarily concerned with a discrete set of lattice points, it
will be convenient here to preseant the theory in terms of continuous func-
tions, derfvatives, and integrals. The transition from the continuous theory
to the discrete theory will be explained in Section III.

To develop the smoothing theory it is first necessary to explain the term
"bump” function. If R denotes the real numbers and p > 0, then a nonnega-
tive function ep : R + (0,o) 18 a bump function supported on the interval
[-p,p] if it is smooth, is identically zero outside [-p,p], and has the

property that

p o
j;p ep(x) dx =]_‘m ep(x) dx = 1.

While there are innumerable choices for a bump function, the one indicated
below is convenient to explain and use.

First define the function a:R + [0,®) by the rule

0 if x <0

a(x) = _ .
e 1/x if x>0
o

Note that a 18 C and identically zero on (-=,0]). The graph of a 1is

indicated in Figure 2. If Bp(x) = a(x - p) » a(p - x), then Bp is

nonnegative, is identically zero off the interval [-p,p], and is C%. The
P
graph of Sp is indicated in Figure 3. If Ap = B(x) dx and
-p .

ep(x) - Bp(x)/Ap, then ep(x) is a btump function supported on [-p,p]-
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Since grid:éeneration is primarily concerned with arrays in 2 and 3
2imensions, the notion of bump function must be extended to the square

Rp = [-p,p] x [-P,p]. Note that ep(x,y) - ep(x) . ep(y) is nonnegative, is

identically zero off Rp' and is C®. Note also that [/ep(x,y) dx dy = 1.
R
P

Definition: If F(£,n) 18 a piecewise continuous function from R? » R, then

the convolution of F by ep is defined by the equation

6 * F(&,n) = ,/:/F(E-u,n-V)-e(u,v) du dv .
P g P
p

Intuitively, the convolution can be thought of as an average of the
values of F over the square [ -p, £+ p] x [n - p, n+ p] relative to
the weight function Bp (u,v). In particular, if F(x,y) =1 for ‘all
(x,y) ¢ Rz, then ep * F(g,n) = 1 for all £,n. Thus, it becomes clear that

if F 1is nearly constant near (£&,n), them 6_ * F(E,n) 1is "close” to

P
F(E,n). Theorem 2.1 gives a precise statement of this observation. In fact
Theorems 2.1-2.9 give precise formulations of the following statements.
1. If p 1s "small”, then ep * F 1is "close” to F.
2. For any p, the convolution ep * P 4is a C* function.
3. 1f F(g,n) 1is differentiable at (&,n) and p 1s small, then all the
derivatives of ep *.F(E,n) will be close to the derivatives of
F(g,n).
4. If T(E,n) = (X(E,n), Y(&,n)), the Jacobian J of T is not zero,

and p 1is small, then the Jacobian J_ of ep * T 1is not zero.

P

5. If T 1is orthogondl and p 1s small, then 6_* T is "nearly”

p

orthogonal.

6. The convolution operator is linear.
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7. The convolution operator is invariaut when applied to functions of

XX
R0

the form F(x,y) = A + Bx + Cy + Dxy.

At this point the reader who is not interested in the theory can skip
ahead to the examples in Section III. An excellent reference for the Advanced
Calculus needed in the proofs of the following theorems is Rudin [6].

Theorems 2.1-2.3 are lifted directly from the Differential Topology books by

Hirsch [7] and Munkres {[8].

Theorem 2.1 If F 1is continuous, ¢ > 0, and
|F(E - u, n-v) - F(E,n)] < ¢ for all (u,v) e R,, then

le, * F(g,m) = F(E,m)| < e -

Proof e
The result follows from the following sequence of equalities and P _::

inequalities.
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le * F(g,n) - F(E:n),

P
- |/]F(E - u n-v) ep(u.V) dudv - F(g,n)| ‘\
R
P

'0
*

)

< /fep(u,v) . I?(g -u, n=-v) - F(E,ﬂ)l dudv ,\::
R 2
P

< effep(u,v) dudv = ¢.
R
P

»..‘f oY
- Theorem 2.2 If F(E,n) 1is piecewise continuous, then ep * F(g,n) 1is C”~. '_.:_}:'
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By change of variables we have Lr‘_
- t:::\:
X 6, * F(g,m S
o 35 - f ® (u,v) » F(E = u, n = v) dudv ‘E@
B
iy 0 (E+u, n+ v) F(u,v) dudv W
- mp JEp 7
+
e 2,(E+u, n+v)
= e F(u,v) dudv.
13
mp “&P
Since 6, is c®, 6, * F is c”.
Theorem 2.3 shows that if p 1{i» “"swmall™ and ﬂ-i’“— is continuous at
39 * F(E,n) (
(&,n), then —Lr—— is "close" to ——agﬂ-. Note that Theorem 2.3 can be
easily generalized to higher derivatives.
o * F(E,n)
:j-j Theorem 2.3 If F(&,n) 1is Cl, then 2_1)——35— = ep * i“%ﬂ)_
Moreover, if € > 0 and {aF(E 35“’ n< v) aF(E’")I <e for (u,v) eR,
_ 36 * F(E,n)  9F(E,n)
. then l aE - 35 l € €. ‘::." .:
Proof 5
- i
- 3 . - - - L, F(E-u, n~-v) ~—
- Since 3 ffep(u,v) F(E - u, n - v)dudv ff&p(u,v) 3% dudv,
. R R CO
$ R ’
1) ,
—E—ae— = ep *31(_3_5,"_). The second half of the theorem follows from the ' e
‘:': proof of Theorem 2.1. -'——
- Remark e
9F -
Theorem 2.3 could have been phrased as follows: If T is plecewise —
contit%us and m < gz <M, then m < e * —g—% < M. Thus, at points where '.:;';:
5K RS
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T is not continuous, the convolution of F by ®p “"blends” the first X
[y

partials of the grid in one section into those of the next. This blending d

Fe

also occurs for all higher derivatives. Theorem 2.4 ensures that if T 1is ;_::’

e £

one-to-one and p 1is "small”, then 6, * T {is one-to-one. m

Theorem 2.4 If T(g,n) = (X(E,n), Y(E,n)) where X(&,n) and Y(E,n) are \'

¢!, then if the Jacobian J of T 1s not zero there is a p > 0 such that :L"_::l

the Jacoblan J, of 6, * T(E,m = (8, * X(&,n), 6, * ¥(£,m) s mot zero. =

A

Proof e

aX 3Y aX 3Y s

= x 9%\ x 91\ _ x 913 , x 9L) s

The Jacobian Jp (ep 35) (ep an) (ep 3n) (Gp 35) -.E:
By Theorem 2.3. 1lim Jp = J, e

p*0

Theorem 2.5 Let T(E,n) = (X(&E,n), Y(E,n)) be a ¢! transformation and let

’

2 IR

- ) § - [X Y ¥
¥ be the angle between u (35' 35), and Vv (3n , an). If 'Pp denotes e
X 3y axX aY N
= * 94 * 9L = * 92 * 91
the angle between up (ep 3E ° ep 35) and vp (ep T ep Bn)’ N
\.'.\:;
then lim ¥ = V. A
p+0 r-'
R
Proof i
u_ s Vv RS
By Theorem 2.3 1im u_=u and limv_= v. Since cos ¥ = -l—p—l-—]-L-l- g
ps0 P po P P luph = I¥pl F
and cos Y = fxu:vz , lim ¥ = ¥,

pso P

Theorem 2.6. If F(§,n) = Fy(E,n) + Fp(E,n), where F; and F, are r
plecewise continuous, then ep * F(E,n) = ep * Fy(g,n) + ep * Fp(&,m).
Proof t:.':;:
‘The additivity of the integral is all that is needed to prove this ~—
theoren.
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Theorem 2.7 If- F(E,n) = £(&) » g(n), where f and g are piecewise contin-

uous, then ep * F(E,n) = [ep * £(g)] - [ep * g(n)] .

Proof

This result is an immediate consequence of Fubini's Theorem.

Theorem 2.8 If F(&,n) = A+ BE+ Cn+ Dgn, then o, * F(g,n) = F(g,n).

Proof

It is a routine check to show that if G(E,n) = E, then
ep * G(E,n) = G(E,n). The theorem is now an immediate consequence of
Theorems 2.6 and 2.7.

Theorem 2.8 shows that if a portion of the grid of the aircraft can be
defined by equations of the form F(&,n) = A+ Bf + Cn + DEn, then the convo-
lution step can be bypassed. Thus, the grid can be generated much Qote
rapidly in that region.

The next theorem is of interest because it gives sufficient conditions
which ensure that the Jacobian will be nonzero at (&,n) even in the case
that the partial derivatives of T(f,n) are not defined at (£,n). In most

applications these hypotheses will be satisfied.

Theorem 2.9 If T(E,n) = (X(&,n), Y(&,n)) has piecewise continuous partials

X aX oY Y

a?d ad - bc > 0, where a < 3 o <b, % <c¢c, and d <-3; for all points
in (u - p, u+ p) x (v - p, v+ p), then the Jacobian Jp of ep * T {is
nonzero.
9
e M T e e e e e e e e e e

- ST Y v <y A e g ey
R T R T R R N Ly o R R R N N P O T YRy T S T T W TP Ty T oy T

e




v P sy

by
»

.
“~
-
A

atamL e Pa ol e el St DA e e WL CR AN L ASDI A AAugh < ch el aAgy ol

Proof

X 8 *ax<b, 0 *_al“:,

By the remark after Theorem 2.3 < * = 92
y 2<% "% %" p 3

- *3’5).( *i‘f)-( x X .( *ﬂ) - 0.
3 (ep o 0, * o 0, an) 6, * 33) > ad - be >

One final remark should be made at this point. While all the theorems in
this section have been stated in a two-dimensional setting, each one general-

izes to three dimensions.
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II1. The Examgles

The purpose of this section is to indicate how the theory from Section II
can be applied to smooth a patched grid. Immediately, we are confronted with
four problems.

l. The size of the parameter p must be fixed.

2. The bump function must be selected.

3. A numerical integration technique must be chosen.

4. A method must be found to fix the points on the boundary, while

retaining the overall smoothness of the rest of the grid.

In the discrete setting the point (£,n) must be replaced by the lattice
point (1,J), where I and J are integers. Since the choice of the
parameter p determines the size of the square Rp. the selection of p now
becomes a decision concerning the number of neighbors of (I,J) to bé used when
convolving with the bump function. If the point (I,J) is to be in the center
of the square, the reasonable choices seem to be 9,25,49, etc. In the dis-
crete situation the larger the number of points, the smoother the new grid
will be. However, the increased number of computations could easily become
prohibitive. For the purposes of the examples presented here the author chose
49 neighbors for each point (I,J). These 49 will be of the form
(I1+K, J+K'), vhere [K|] <3 and [K'|< 3.

While the choice of bump function is important, it does not seem to be as
critical as some of the other problems. However, if one is careless and
chooses a bump function which is very near zero except at the point (I,J),
then very little or no smoothing will take place. Since the bump function is
identically zero on the boundary of the square Rp, the integration is now to

be performed over the square (I + K, J + K'), where |K| <2 and |K'| < 2.

'''''''''''''''''''''''''''''''
................................
............................
.................
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I The method of integration chosen is the two-dimensional version of the ts$?'
5 .'\,-':ﬁ-
kl Newton-Cotes formula indicated in Proposition 3.1. This two-dimensional inte- k
ros [y
. AN
a grator was obtained by discarding the remainder term and taking the tensor ;ﬁ}::
X bASLY
- product with itself. AN
OO
-
Proposition 3.1 (See page 93 of Hildebrand [9].) 1If L < X, < ... < Xg» e
h = X4l " Xpo and fi = f(xi), then | }ﬁ:a
%6 h f’ -
'}; £(x) dx = 77 (416 + 216f) + 27f, + 272f, + 27f, L
o 9 ’

_9n’  _(8)
+ 216f¢ + 41£,) ~ 755 £ (2)-

In the theory outlined in Section I1 there is no mention of boundary
points. If the problem is ignored, the surface of the aircraft will be s

smoothed along with the grid. Sharp corners will become rounded. (Compare

[
Figs. 4 and 5.) While there are a variety of ways to deal with this problem, [
the author chose to reduce the amount of smoothing for grid points near the fﬂf-;
boundary by linear blending. 1In particular, if T(I,J) denotes the original ::ié

grid point and d 1is the distance from T(I,J) to the boundary, then the new el

grid point will be Tn(I,J) = de(I,J) + (1 - d4) T(1,J), where Ts(I,J)

denotes the corresponding point of the smoothed grid. Figures 6-10 indicate
the rough and smooth versions of various shapes. Since the value of d :
was never quite equal to 1 in these examples, small discontinuities
in the derivatives were propagated into the interior of the regions. ik*
Despite this problem the grids were still smoothed fairly well. 1In

the future the author plans to develop a distance function which is

exactly equal to 1 throughout most of the interior of the region so 355

A

that the grid will be smooth away from the boundary. ~"v‘
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Figures 11 and 12 have been included to compare the Laplace operator and
the simple average of the nine immediate neighbors. While these two methods
are both much faster than the convolution, they usually need to be iterated to
be effective. When iterated without boundary control, the grid points may

drift outside the regtion in question. This phenomenon is demonstrated by
Figure 13. This same Figure also shows that a transformation which 1s a
solution of Laplace's equation may fail to be one-to-one even if it is

one-to—one on the boundary. If boundary control is forced on the Laplace

operator, then the grid points will stay in the region. However, discon-
tinuities in the derivatives may appear near the boundary as indicated in
Figure 14, Figure 15 illustrates the result when the convolution operator is

iterated twice. Obviously, any further iterations and the grid will become

overlapping.

13
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IV. Concluding Remarks

The mathematica in this paper shows that it is possible to patch a grid

; together from local grids. Even if the patched grid is not smooth, it can be

i approximated by a smooth one. Desirable properties such as orthogonality and
clustering of grid points will be almost retained. These techniques can be
thought of as postprocessors to remove discontinuities in the grid derivatives

. along the boundaries of adjacent patches. A future application could be the

smoothing of grids created from patches, where one patch is generated by a

hyperbolic method, a second by an elliptic method, a third by an algebraic

method (see Ref. [l10] or [11]), etc. The final grid would then be a smoothed

version of the union of the patches.

One further remark seems to be in order. When the author beggn this

. research, he only considered the convolution operator. At the suggestion of

P. Eiseman the Laplace operator was also considered. While both wocked well,

the Laplace operator is easier to program, faster in terms of CPU time, and

i seemed to generate somewhat smoother grids. A reason for using the convolu-

tion operator is that it seems to be better at preventing overlapping near the

boundary. The Laplace operator can frequently be iterated successfully

3 5-10 times. The convolution works best when applied 1-2 times.
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The Graph of the Function B8(x).

The Graph of the Function a(x).

Figure 3.

Figure 2.
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Foward Facing Ramp-Before Smoothing.
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Smoothing.

Bump-After

Figure 10.
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Corner-Smoothed by Laplace (with Boundary Control
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and 3 Iterations)
!

Corner~Smoothed by MNine Point Average.
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Figure 12.
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Figure 13.
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Smoothed with Boundary Control (2 Iterations).
-

Corner-Smoothed by Laplace Operator (3 Iterations).
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Figure 14.
Figure 15.
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